Threads And MFC

AfxBeginThread comes in two flavors. The first one creates worker threads. The other

version creates a class that you derive from CWinThread.

· Creating Worker Threads

An MFC thread that does not require a message loop is a worker thread. A worker thread can do any type of

processing, and it may use modal dialogs and dialog boxes. However, without a message loop, you can’t create

modeless dialogs or regular windows.

Worker threads are easy to create. You only need to write a global or class static function that returns a UINT and

takes a void pointer as an argument. You call AfxBeginThread with the name of the function and the argument you

want to pass. You may optionally supply the priority level, the stack size, a creation flag, and a security attribute.

The creation flag is 0 if you want the thread to start right away or CREATE_SUSPENDED if you want the thread

not to run until you call ResumeThread.

MFC will create a CWinThread object and return a pointer to it as the return value to AfxBeginThread. Your

function will execute in its own thread. It will have unique local variables, but it will share global variables with

other threads in the same process.

· Creating User-Interface Threads

MFC uses the CWinThread object to represent all threads. It even uses an object derived from CWinThread to

represent your program’s main thread. If you look closely, you’ll see that CWinApp (the class that represents your

program), is derived from CWinThread.

If you need a thread that has its own event loop, you’ll have to derive a class from CWinThread. If you don’t need

an event loop (that is, you won’t use any windows except, perhaps, modal dialogs and dialog boxes), then you can

use CWinThread just as it is. In either case, you don’t directly create a CWinThread object, you use

AfxBeginThread instead.
The first thing you must do when creating a user-interface thread is derive a class from CWinThread. You must

declare and implement this class, using the DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros.

This class must override some functions, and can override others. These functions and what they should do are

presented in the following table.

Functions to Override When Creating a User-Interface Thread

PRIVATE
Function name
Purpose

ExitInstance
Perform cleanup when thread terminates. Usually overridden.

InitInstance
Perform thread instance initialization. Must be overridden.

OnIdle
Perform thread-specific idle-time processing. Not usually overridden.

PreTranslateMessage
Filter messages before they are dispatched to TranslateMessage and DispatchMessage. Not usually overridden.

ProcessWndProcException
Intercept unhandled exceptions thrown by the thread’s message and command handlers. Not usually overridden.

Run
Controlling function for the thread. Contains the message pump. Rarely overridden.

Member
Definition

CreateThread
Creates the thread; use AfxCreateThread instead

m_pMainWnd
Main window for thread

m_pActiveWnd
Current active window

m_bAutoDelete
If TRUE, delete thread object when thread terminates; TRUE is the default

m_hThread
Windows thread handle (can also cast CWinThread to HTHREAD)

m_nThreadID
Thread ID GetThreadPriority Gets thread’s priority level

SetThreadPriority
Sets thread’s priority level

SuspendThread
Suspends thread

ResumeThread
Resumes thread (call once for each call to SuspendThread)

PostThreadMessage
Posts a message to the thread’s event queue

InitInstance
Override to provide initialization code for the thread

Run
Override to customize the thread’s message loop

PreTranslateMessage
Filters messages and processes accelerator keys

PumpMessage
 Low-level message pump

OnIdle
Called when no messages are pending

IsIdleMessage
Checks for special MFC idle messages

ExitInstance
Override to provide code on thread termination

ProcessWndProcException
Processes unhandled exceptions

ProcessMessageFilter
Filters messages

GetMainWnd
Returns main window

References

[Microsoft © MSDN http://msdn.microsoft.com]

[MFC Black Book http://ccfit.nsu.ru/programming/MFC/MFCBlackBook/main.html]

UINT MyThreadProc(LPVOID pParam) {

CMyObject* pObject = (CMyObject*)pParam;

if (pObject == NULL || !pObject->IsKindOf(RUNTIME_CLASS(CMyObject)))

return 1;

// if pObject is not valid

// do something with 'pObject'

return 0;

// thread completed successfully

}

// inside a different function in the program . . .

pNewObject = new CMyObject;

AfxBeginThread(MyThreadProc, pNewObject); . . .

// In the .cpp file�

IMPLEMENT_DYNCREATE(CMyThread, CWinThread)

�//you just have to define what you will do in the InitInstance,

//ExitInstance and Run.

// In an other method :

CMyThread* pThread = (CMyThread*) AfxBeginThread(RUNTIME_CLASS(CMyThread),

 THREAD_PRIORITY_NORMAL,

 0,

 CREATE_SUSPENDED);

//---here---

//you can initialise the attribute of your class here

//and then you resume the thread�//---here---

pThread->ResumeThread();�

//Here is an example :

//In the .h file :

class CMyThread:public CWinThread {

	

DECLARE_DYNCREATE(CMyThread)

	protected:

		CMyThread();

		virtual ~CMyThread();

	

	public:

�//Nonzero if initialization is successful; otherwise 0

virtual BOOL InitInstance()

//The thread’s exit code; 0 indicates no errors, and values //greater than 0 indicate an error

		virtual int ExitInstance();

		

		virtual int Run();

.�.�.

};

